Quantistica: Azione Spettrale a Distanza di Una Singola Particella – Quantum experiment verifies Einstein’s ‘spooky action at a distance’

Fisica quantistica

Là dove collassano le funzioni d’onda – Descritta su “Nature Communications” la prima verifica sperimentale del collasso non locale della funzione d’onda di una singola particella, fenomeno che Einstein riteneva fuori dalla realtà. Le misure sono state ottenute grazie al metodo della rivelazione omodina e alla tomografia quantistica.

Albert Einstein proprio non riusciva a mandarla giù. «Non posso crederci seriamente», scriveva ancora nel 1947 in una lettera al collega Max Born riferendosi alla teoria quantistica, «perché non si può conciliare con l’idea che la fisica dovrebbe rappresentare una realtà nel tempo e nello spazio, libera da spettrali azioni a distanza». La “spettrale azione” – o inesplicabile, o spaventosa, a seconda di come vogliate rendere il tedesco spukhafte, tradotto con qualche incertezza in inglese come spooky – che Einstein non poteva accettare era quella implicita nel cosiddetto collasso della funzione d’onda. E in particolare quell’ossimorica coppia d’aggettivi – un collasso non locale e istantaneo – che lo caratterizzano: se una singola particella può essere descritta da una funzione d’onda che s’estende a distanze arbitrariamente grandi, come prevede la meccanica quantistica, senza mai però poter venir osservata in due o più luoghi, in quanto l’osservazione stessa in un luogo – la rilevazione – fa appunto collassare istantaneamente la funzione d’onda in tutti gli altri luoghi dell’universo… se così è, ragionava il nostro Albert preferito, che ne sarebbe del limite della velocità della luce? O, più in generale, del principio di località?

Decenni di conferme dei principi basilari della meccanica quantistica, e in particolare dei fenomeni di entanglement, hanno dimostrato che, per quanto controintuitiva e paradossale possa sembrare, la “spettrale azione a distanza” non è un abbaglio: avviene davvero. L’ennesima conferma sperimentale è descritta sul numero odierno di Nature Physics, a firma di un team di scienziati delle università di Tokyo, Varsavia e Brisbane (sede di uno dei cinque campus dell’australiana Griffith University). Spartendo tramite un beam splitter un singolo fotone fra due “laboratori”, Maria Fuwa e colleghi sono infatti riusciti a verificare sperimentalmente – e con una sola particella è la prima volta – che il collasso non locale della sua funzione d’onda, le cui proprietà sono state misurate grazie al metodo della rivelazione omodina e alla tomografia quantistica, è un fenomeno reale. «Einstein non volle mai accettare la meccanica quantistica ortodossa, e l’argomento alla base del suo rifiuto era proprio questo della singola particella. Ecco perché è così importante dimostrare il collasso non locale della funzione d’onda con una particella soltanto», spiega Howard Wiseman della Griffith University, uno dei coautori dello studio, sottolineando la differenza tra questa conferma – nella quale il singolo fotone è da un certo punto di vista come in entanglement con se stesso – e quelle ottenute in precedenza con più particelle.

Fonte/Leggi tutto → Media.INAF.it

Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurements. A single quantum particle can be described by a wavefunction that spreads over arbitrarily large distances; however, it is never detected in two (or more) places. This strange phenomenon is explained in the quantum theory by what Einstein repudiated as ‘spooky action at a distance’: the instantaneous nonlocal collapse of the wavefunction to wherever the particle is detected.

Here we demonstrate this single-particle spooky action, with no efficiency loophole, by splitting a single photon between two laboratories and experimentally testing whether the choice of measurement in one laboratory really causes a change in the local quantum state in the other laboratory. To this end, we use homodyne measurements with six different measurement settings and quantitatively verify Einstein’s spooky action by violating an Einstein–Podolsky–Rosen-steering inequality by 0.042±0.006. Our experiment also verifies the entanglement of the split single photon even when one side is untrusted.

Source/Continue reading → Nature.com

Related posts - Potrebbe interessarti leggere anche:

This entry was posted in Fisica, News, Physics, Planet Earth, Science, Space, Technology and tagged , , , , , , , , , , , , , . Bookmark the permalink.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *